
International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1339
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A survey on Personalized Query
Recommendation System for Database

Exploration
Shiny Nair, Varghese S Chooralil

Abstract— An effective information mining process necessitates an extensive exploration of the database. Analysis and study of large
volume of data available in data marts are inevitable for knowledge discovery. For example, for scientific exploration, scientists need to
query large databases for scientific data. However, all users may not possess the expertise in Structured Query Language that is generally
required to query relevant data from the database. Considering complex relational databases, seldom will novice users have the
knowledge and expertise of the underlying schema of the database and association between relations and attributes. The QueRIE system
that supports users by presenting personalized query recommendations. The QueRIE framework identifies similarities with previous users’
information needs and recommends queries to the current user. This paper studies the different algorithms and systems for query
recommendations with focus on a QueRIE framework instantiation that attempts to identify similar queries as recommendations to the user,
based on a set of query fragments from users’ session.

Index Terms— Data mining, fragment based, interactive data exploration, personalization, query fragments, query recommendation, tuple
based.

—————————— ——————————

1 INTRODUCTION
NTERACTIVE database exploration is a key task in infor-
mation mining. There is a plethora of data available in data-
base systems today for analysis and research. To extract

knowledge from such huge volumes of data, users should be
adept at querying databases for data that is relevant and pre-
cise. Structured Query Language is the standard language to
query relational databases. However, users are not always
skilled to write complex queries. Complex schemas, relation-
ships between tables, ambiguous table and column names are
major concerns among others, especially for an inexperienced
user. Adhoc requests for information in databases are com-
mon in the industry and scientific community. However, if
users do not have adequate knowledge about the data and its
significance, then there is a risk of missing out on relevant da-
ta or potentially motivating information. Therefore, this calls
for assistance for such users to present them with query rec-
ommendations. Query templates can be issued to the user that
can be modified and submitted as per the requirement.

The QueRIE system presents personalized query recom-
mendations to users based on previous session summaries.
The users’ querying behavior is analyzed to identify similar
queries and matching patterns from past sessions and present-
ed as recommendations to the current user. This is based on
the principle that if two users exhibit similar querying behav-
ior, then it is likely that they will be interested in accessing
similar data. The objective of the QueRIE system therefore, is

to assist users in finding relevant information in interactive
database exploration. Although in certain disciplines, users
are allowed to get access to data through web-enabled query-
ing tools or interfaces, an extensive exploration of complex
databases may not be feasible because of the aforementioned
reasons. As data is continuously increasing and more tables
are created making the schema more complex, users are faced
with the challenge of extracting the relevant information.
QueRIE attempts to generate query suggestions to the users
and enables users to either directly submit or refine the que-
ries rather than constructing a new query.

QueRIE is built on the simple premise based on the Web
Recommender systems: If user A and user B both like the
same book X, then if A likes the book Y, then it is likely that B
will like the book Y as well. Similarly, if A and B both query
data X, and if A queries data Y, then it is quite possible that B
will be interested in data Y.

An approach to realize this concept is to leverage the col-
laborative filtering methods used in the Web recommender
systems. However, the direct transfer of this paradigm to the
database context poses serious challenges. SQL being a declar-
ative language, it is possible to retrieve the same data using
different SQL queries that are structurally different. It is pos-
sible to obtain identical query result set using multiple syntac-
tically varying queries. Therefore, direct evaluation of SQL
among users will be complicated and may not result in useful
recommendations because of the query-equivalence problem.
As an example, consider the queries: SELECT X.A FROM X
JOIN Y WHERE X.A=Y.A AND X.A = 10; SELECT A FROM X
WHERE A =10; Regardless of the structure or syntax of the
SQL, both these queries will result in the same result set if
there is a foreign-key relation on the attribute A between rela-
tions X and Y. User queries are not explicitly rated and this
poses the second challenge. As there is no rating available for

I

————————————————
• Shiny Nair is currently pursuing Master of Technology degree program in

Computer Science & Engineering in M.G. University, Rajagiri School of
Engineering & Technology, Kerala, India. E-mail: nairshiny@gmail.com

• Varghese S Chooralil is is currently working as Assistant Professor, De-
partment of Computer Science and Engineering, M.G. University, Rajagiri
School of Engineering & Technology, Kerala, India. E-mail: varghe-
sesc@rajagiritech.ac.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1340
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

queries, it becomes difficult to ascertain the importance of a
query in computing recommendations. Finally, the suggested
queries should be intuitive such that the user can understand,
modify and refine as required. Queries that are too “synthetic”
tend to confuse the user and may not prove useful to the user.

QueRIE handles these issues by adopting a closed loop ap-
proach. The system accepts query from user, fragments the
query into basic elements and computes similarities based on
a signature of the user’s querying behavior. Systems logs are
used for mining queries and presenting recommendations
matching the query pattern.

2 RELATED WORK
Amazon.com recommendations: Item-to-item collaborative
filtering (G. Linden, B. Smith, and J. York) [5] says that an item
to item collaborative filtering technique can be used for per-
sonalizing the customer’s online store. The Amazon online
store is customized for individual customers based on the cus-
tomer’s preferences, interests, purchase patterns etc. Rather
than restricting recommendations based on the items an indi-
vidual purchases or explicitly rates, other features like cus-
tomer interests, list of favorite items, demographic details can
also be considered as important attributes that contribute to
valuable recommendations. Amazon.com leverages these rec-
ommendations for various marketing and advertisements
campaigns on its various websites’ pages.

Collaborative technique is the widely adopted technique
for generating web-based recommendations. This technique
focuses on collecting, studying and analyzing huge amounts
of data on customers’ purchase behavior, preferences etc. and
generating recommendations based on the similarity with oth-
er customers. Thus, items that have been liked and purchased
by users in the past will influence the items that Amazon.com
suggests to the current user. There are a number of challenges
in web recommendation algorithms. The main challenge con-
cerns with handling large volumes of data and generating re-
al-time recommendations that is useful and relevant. There
will be an obvious lack of information for new customers and
a plethora of information available for old customers. Finally it
has to be noted that the customer data is volatile. Every inter-
action of the customer provides additional information and
should be taken into account right away in making interactive
suggestions.

There are several approaches to solve recommendation
problems. In the traditional collaborative filtering algorithm,
recommendations are based on few customers who are most
similar to the user. If N is the number of distinct items in the
catalog, then an individual customer is represented as an N-
dimension vector of items. The similarity between two users X
and Y can be measured considering the cosine of the angle
between the two corresponding vectors. Cluster modeling is
another technique to generate recommendations that divides
the customer base into segments. The task is thereby treated as
a classification problem. Segments are generated, summarized
and represented as vectors based on which the user’s similari-
ty is computed. Search-based or content-based method con-
siders the problem as a search task for similar items. Similar
keywords, subjects, personalities, authors etc. are used to con-

struct search queries to suggest popular items as recommen-
dations.

In item-to-item collaborative filtering, instead of relating
the user to similar customers, items that a user purchases or
rates are matched to similar items. A recommendation list is
then compiled based on the most similar items. This approach
is based on a similar-items table that is build by considering
items that users incline to purchase together.

Contrary to the traditional methods, the item to item col-
laborative filtering scales independently of the number of us-
ers and product catalog items. The expensive similar table can
be computed offline. This algorithm produces recommenda-
tions that are interactive, of good quality and scales to large
data sets.

Personalized DBMS: An elephant in disguise or a chamele-
on? (G. Koutrika) [6] mentions Web databases that provide a
keyword-based interface suffer from challenges like “too-may-
answers” and “empty-answer”. An empty answer can result if
the query conditions are restrictive. On the contrary, relaxed
filter conditions can result in many rows that satisfy the query.
To alleviate this problem, user preferences can be incorporated
into queries that will support alternative choices and priorities
for the users thus contributing to the preference-aware query
model. Preferences can be represented both qualitatively and
quantitatively. Qualitative preferences are expressed using
binary preference relations that compare tuples relatively.
Quantitative preferences assign scores to specific tuples or
query conditions using Scoring function. A tuple with a higher
score is preferred over the other. If preferences are expressed
qualitatively using preference relations, then they are blended
into relational query languages through an operator (like sky-
line) that selects from its argument relation the set of the most
preferred tuples according to a given preference relation. On
the other hand, if preferences are specified quantitatively us-
ing scores, then tuples are assigned scores, and the answer of a
query with preferences is defined as the ranked set of top-n
results.

There are three possibilities in implementing preference-
aware query processing: (i) query translation, (ii) special eval-
uation algorithms for preference operators implemented on
top of the DBMS, and (iii) native implementation, specified
inside the database engine. The first two are plug-in ap-
proaches. The query translation process involves the following
steps: (i) query rewriting wherein the preferences are embed-
ded as standard query conditions in the original query result-
ing in a set of new queries, (ii) materialization where the new
queries are executed, and (iii) aggregation, that combines the
partial results into a single ranked list. The properties and op-
timization levels of the new operators may vary depending on
whether a qualitative or quantitative approach is adopted. If
the operators are very generic, it may limit the range of opti-
mization and may weigh down the benefits of a generic im-
plementation and a careful design of the query optimizer is
required. Embedding preferences inside the DBMS is a giant
leap towards a personalized database system that will help to
retrieve customized answers.

In FlexPref: A framework for extensible preference evalua-
tion in database systems (J. Levandoski, M. Mokbel, and M. E.
Khalefa) [7], context is included in Web database systems as

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1341
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

an additional parameter in preference evaluation. Preferences
can be integrated inside or on top of databases. This supports
the implementation of varied range of applications from per-
sonalized database systems to decision-making tools. The
common existing approach for preference evaluation in data-
base system is the on-top technique. In this approach, the
DBMS is considered as a black box to the preference method.
The preference evaluation method (like Top-K, Skyline etc.) is
entirely decoupled from the database. The DBMS is not aware
of the semantics of the preference method. Although this is a
simple approach, there are several performance limitations
related to the query and internal operations optimization. An
improved approach is the built-in approach wherein the pref-
erence evaluation method is tightly coupled with the query
processor. Database operations (like selection, join etc.) are
customized for each preference method. This is a more effi-
cient approach as the extensive work of evaluating, ranking
etc. is injected inside the DBMS. However, several lines of
code are required to implement and incorporate existing as
well as future preference methods and therefore very little
work is done on this.

The FlexPref framework adopts a centralized approach for
preference evaluation that is both simple and efficient. The
technique is simple as introducing a new preference method
requires registration to three functions alone. These functions
demonstrate the essence of the preference evaluation method.
The approach is efficient as once the evaluation method is
built with the core of the database system, it “lives” in the sys-
tem, coupled with the database engine and query processor.
This plug and play paradigm enables efficient execution. Con-
sider, two data objects X and Y and a set of preferred objects S,
then the three general functions that have to be implemented
to enable registration of a new preference evaluation method
are (i) PairwiseCompare(Object X, Object Y) – The function
updates the score of X and returns 1 if Y can never be a pre-
ferred object, -1 if X can never be a preferred object and 0 oth-
erwise. (ii) IsPreferredObject(Object X, PreferenceSet S) – The
function returns true if X is a preferred object and can be in-
cluded in S, false otherwise. (iii) AddPreferredToSet(Object X,
PreferenceSet S) – The function includes X in S and rearrange
or remove objects from S, if required.

These functions modularize the preference evaluation op-
erations and at the same time do not require being aware of
the query processor specifics, that results in efficient execution
of preference queries.

A case for a collaborative query management system, (N.
Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and
D. Suciu) [8] emphasizes the need for a query recommenda-
tion framework and outlines the architecture of a collaborative
query management system for large-scale, shared-data envi-
ronments. Traditional trial-and-error method and pre-defined
query templates for constructing queries prove expensive in
massive data sets. To support users to formulate queries, data
mining techniques can be used to evaluate query logs to pro-
vide query recommendations leveraging knowledge from past
queries issued by the current or other users.

The system architecture of the proposed collaborative que-
ry management system (CQMS) includes the CQMS client that
provides four interaction modes (Traditional Interaction,

Search and Browse Interaction, Assisted Interaction and Ad-
ministrative Interaction) that communicates with the CQMS
server through both standard SQL queries and meta-queries.

 The CQMS server is build on top of a DBMS and comprises
four components as shown in Fig. 1. The Query Profiler and
the Meta-Query Executor are online components. The Query
Profiler receives standard SQL queries as input, logs the que-
ries in the Query Storage and forwards them to the DBMS. The
component performs complex pre-processing of the queries
like extracting and storing query features and logs statistics
about query execution and samples from its query results.

The Meta-query Executor handles all queries over the Que-
ry Storage. The CQMS client generates these queries through
the Search and Browse and Assisted Interaction modes. This
component also looks into administrative requests such as
access control configurations. The Query Miner and Query
Maintenance are background components. The Query Miner
analyzes the query storage. It performs tasks such as cluster-
ing queries based on similarity etc. Its objective is to extract
useful information from the query log. It runs periodically in
order to maintain up-to-date information. The query log is
automatically maintained by the Query Maintenance compo-
nent. There are no technical details provided in the paper,
however on the implementation details of such a recommen-
dation system.

FlexRecs: Expressing and combining flexible recommenda-
tions, (G. Koutrika, B. Bercovitz, and H. Garcia-Molina) [9]
defines a framework that implements a high-level parameter-
ized workflow including traditional relational operators and
new operators that supports flexible and useful recommenda-
tions over structured data. FlexRecs implements a framework
to provide recommendations that are not fixed and provide
users with choices – e.g. University students who require
guidance to pursue a particular major or to select courses in
future semesters. The flexibility is realized with the use of pa-
rameters to the query that are determined by the users. This is
implemented with the help of new SQL operators that is build
on top of the SQL engine. The new SQL operators include (i)
Extend operator that helps in creating extended attributes in
the tuples of a relation, (ii) Recommend operator that per-
forms the comparisons based on parameterized functions, (iii)
Blend operator that combines recommendations to produce a
unified relation.

The FlexRecs engine architecture includes the Workflow

Fig. 1. CQMS System Architecture

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1342
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

manager to define the various workflows and end-users can
invoke the defined ones. The Workflow parser is an important
component that constructs an expression tree for the new op-
erators defined for an input workflow. The Recommendation
Plan Generator develops a recommendation execution plan for
this expression tree. The sequence of SQL statements and
function calls, the order of the execution of operators are speci-
fied in the plan. Finally, the Recommendation Generator exe-
cutes the plan and returns the recommendations. It directs the
SQL queries to the DB engine, combines any intermediate re-
sults and invokes the functions specified in the plan for com-
paring and blending tuples.

FlexRecs is thus a framework for declaratively defining rec-
ommendations integrating traditional relational and the new
customized recommendation operators. FlexRecs enables de-
signers to conveniently specify multiple recommendation par-
adigms and experiment with novel recommendation strategies
and optimization techniques. Users can dynamically personal-
ize recommendations tailored to their needs.

SnipSuggest: Context-aware autocompletion for SQL, N.
Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu [10] de-
scribes a system that assists users in constructing context
aware SQL queries on-the fly. As and when user types the
query, user can select a particular clause and request the sys-
tem to provide recommendations for specific clause. To gener-
ate its recommendations, SnipSuggest considers the query
space as a Directed Acyclic Graph (DAG) and models each
query as a set of features. Every possible set of features be-
comes a vertex in the DAG. The user’s partially written query
is transformed into a set of features and mapped onto a node
in the DAG. A DAG represents the relationships between dif-
ferent clauses and recommends possible additions to various
clauses in the current user’s query. However, the system does
not recommend complete queries and each query is treated
independently of any previous one.

3 SQL QUERIE RECOMMENDATIONS
QueRIE is a system for Personalized Query Recommenda-
tions. It supports interactive and collaborative database explo-
ration presenting users with customized and interesting query
recommendations. Applications include, information mining
over large-scale data warehouses, systems for ad-hoc analysis
over big data, services for scientific-data exploration (Genome
Browser, SkyServer) and so on.

3.1 The QueRIE Framework
The QueRIE framework is shown in Fig. 2. It is primarily a
workflow in which the DBMS and the Recommendation En-
gine processes the active user’s queries. The DBMS executes
each query and returns the result set. The query is stored in
the Query Log. The Recommendation Engine blends the cur-
rent user’s query with information gathered from the query
logs of past users, and compiles a set of query recommenda-
tions for the user.

Consider a scenario where users explore a relational data-

base through a sequence of SQL queries. The objective of the
exploration is to determine interesting information or confirm
a particular hypothesis. The queries posted by a user during a
single session or visit to the database are generally correlated.

This indicates that a user first inspects the result sets of the
previous queries based on which the user formulates the next
query. For example, a real user session, belonging to the Sky-
Server query logs, is shown in Fig. 3. This query pattern corre-
sponds to an interactive exploration of the database: the user
first understands the count of tuples satisfying a predicate,
then proceeds to get the number of distinct objects corre-
sponding to these tuples and finally extracts the objects that
exist more than once in the database. This sequence of SQL
statements also implies that the user is not familiar with the
schema. The system could recommend the appropriate query
(Query 4 in the Fig. 3) right after the first attempt (Query 1).
This could be less time-consuming for the user. This is possi-
ble if a similar session already exists in the query logs and thus
can be used to generate recommendations for the active user.

3.2 Conceptual Framework
The notation Si represents the session summary for user i.
User i = 0 represents the current user whereas i = 1,...,n
represents past users of the system. To generate
recommendations for current user S0, the framework first
computes a "predicted" summary Spred. The summary reflects
the predicted degree of interest of S0 considering different
query characteristics, including those that already appear in
user’s queries, as well as new ones that have not yet been

Fig. 2. QueRIE Architecture

Fig. 3. Sample SkyServer Query Log

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1343
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

used. The summary Spred is then used as the “seed” for the
generating recommendations.

The predicted summary is defined as: Spred = f (S0, S1,...,Sn).
f is a function that combines information from both the active
user’s summary S0 and the summaries S0, S1,...,Sn of past us-
ers. The mixing factor α [0, 1] determines the importance of
the S0 (the current user’s session) with respect to S0, S1,...,Sn
(the sessions of other users). When α = 1, Spred takes into ac-
count only the queries in S0, whereas α = 0 has the opposite
effect and only the queries of other users affect the recom-
mendations. Neither of these extremes might be a good setting
for all possible cases. Thus, α is a parameter of the system that
can be configured depending on the type of the database and
the user’s querying behaviors.

The framework generates queries of highest importance
based on the summary Spred. These queries are then presented
as recommendations to the active user. Overall, the framework
as shown in Fig. 4 consists of the following components: (i) a
model for session summaries, (ii) a method to compute the
session summaries S0, S1,...,Sn, (iii) a method to compute Spred,
and (iv) a method to select queries based on Spred.

3.3 Tuple-Based Query Recommendation
In the tuple-based instantiation of the QueRIE framework, the
session summary captures the tuples in the base tables that are
touched by the queries in the session [1], [2]. Every coordinate
of the weighted vector representing the session summary Si
corresponds to a distinct database tuple.

The length of the vector is assumed to be T that denotes the
total number of tuples in the database. The weight Si [τ] repre-
sents the importance of a given tuple τ ϵ T in session Si. If the
tuple appears in the result set for any one query issued in the
session, then the weight will be non-zero. Two different
weighting schemes are considered for setting Si [τ], a binary
scheme and a result-based scheme:

Binary Scheme:

 SQ[τ] = 1 if τ is a witness
 0 if τ is not a witness (1)

Result-based Scheme:

SQ[τ] = 1/|ans(Q)| if τ is a witness

 0 if τ is not a witness (2)

Here ans(Q) is the result-set of Q. The importance of τ is di-
minished if Q returns many results, as this implies that query
is not specific whereas a small cardinality indicates that the
query is very restrictive, resulting in tuples that have high sig-
nificance.

Session and Predicted Summary: Given vectors SQ for each
query Q by user i, the session summary Si and Predicted
Summary Spred is defined as:

 Si = ∑ SQ (3)

 QϵQi

 Spred = α. S0 + (1 – α). ∑ sim(Si, S0) . Si (4)

 i=1,..,n

sim is a similarity function like cosine similarity that defines a
metric between the two vectors. This approach is inspired by
Web recommender systems and the recommendations are in-
clined towards users who exhibit similar behavior to the current
user. The algorithm then recommends queries based on the com-
puted Spred that retrieve tuples of high predicted weights. For each
candidate query Q, the similarity sim(SQ, Spred)is computed. The
candidate queries with the highest similarity are returned as rec-
ommendations to the user.

Analysis and discussion: The tuple-based approach is based
on the individual witnesses to the user’s queries and thus de-
scribes the user’s querying behavior at a very fine level of detail.
This increases complexity as, the session summaries grow linear-
ly with the size of the database. The similarities between the cur-
rent user’s session and those of previous users need to be calcu-
lated every time the active user submits a new query. It is possi-
ble to implement this method more efficiently by using a Min-
Hash probabilistic clustering technique that maps each session
summary Si to a “signature” h(Si) [2], [3]. The Jaccard similarity
between vectors is reduced to the similarity of their signatures -
JaccardSim(Si, S0) = sim(h(Si), h(S0)). Although this leads to an
improvement in computational efficiency, there is loss of preci-
sion of the generated recommendations.

3.4 Fragment-Based Query Recommendation
The core idea of the fragment-based instantiation is to recom-
mend queries whose syntactical features match the queries of
the current user [3], [4]. It works in a similar manner to the
tuple-based one. The two main differences are (i) session
summary representation and (ii) similarity formulation. The
coordinates of the session summaries correspond to fragments
of queries rather than witnesses.

Fragments are identified as the following syntactical fea-
tures of the queries in the session: relation and attribute refer-
ences, join and selection predicates etc. The notion behind this
approach is to recommend queries whose syntactical features
are similar to the current user’s queries. The objective is to
identify fragments that appear together in several queries
posed by different users, and use them in the recommendation
process. QueRIE first calculates offline the pair-wise similari-

Fig. 4. Conceptual Framework

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1344
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

ties of all query fragments recorded in the query logs. Real-
time predictions are then made based on these similarities
taking into account the "rank" (or importance) of each frag-
ment with respect to the current user session. The highest
ranked query fragments are the query characteristics used to
mine the query logs and select the most relevant queries that
are used as recommendations.

Session and Predicted Summary: Session summary Si is a
vector whose cell Si [Φ] contains a non-zero weight if the
fragment Φ appears in at least one query of the session. For a
given fragment Φ, a single query vector cell is defined as
SQ[Φ] as a binary variable that indicates if the fragment Φ ex-
ists in a query Q. Then Si [Φ] represents the importance of Φ in
session Si. Conceptually, the length of the vector is equal to
the number of possible fragments. Two different weighting
schemes are considered, a binary scheme and a weighted
scheme:

Binary scheme:
 Si = V SQ (5)

 QϵQi

Weighted scheme:
 Si = ∑ SQ (6)
 QϵQi

Each coordinate Spred[Φ] is computed as follows:

 Spred[Φ] = ∑ ΡϵR S0 [Ρ] * sim(Ρ,Φ) (7)

 ∑ ΡϵR sim(Ρ,Φ)

R is the set of top-k similar query fragments and k is a pa-
rameter of the framework. The fragment-similarity metric
sim(Ρ,Φ) evaluates the similarity of two fragments Ρ and Φ in
terms of their corresponding weights in the session summaries
S1,...,Sn. The final step of generating recommendations is simi-
lar to that of the tuple-based approach, once the predicted
summary Spred has been computed, its similarity to each query
summary SQ is calculated, and the queries having the highest
similarity to the active user’s summary are returned as rec-
ommendations.

Analysis and Discussion: The fragment-based approach ev-
idently captures information at a coarser level of detail. Con-
sequently, there is a possibility to miss relevant and interest-
ing correlations between users. However, the approach is ad-
vantageous as it can be implemented very efficiently. It allows
for a scalable system as the space of fragments grows slowly.
The summaries are very sparse as summaries are represented
in terms of query fragments rather than tuples. This leads to
faster similarity calculations. The fragment-to-fragment simi-
larities can be computed offline and stored for very fast re-
trieval when recommendations need to be generated.

Query logs can contain several slightly dissimilar queries.
Queries are relaxed in order to increase their cardinality. For
instance, the WHERE clauses are relaxed by converting the
numerical data and string literals to generic string representa-
tions. For example, strings are replaced by STR, hexadecimal

numbers by HEXNUM and decimals by NUM. Subsequent to
the query generalization, they are converted into fragments.
For example, the fragments of Query 4 in Fig. 3 are:
COUNT(*), REGION, REGION.TYPE PATMATCH,
COUNT(*) COMPARE NUM. This relaxation in the query
structure may result in missing out on interesting query rec-
ommendations

4 CONCLUSION
The QueRIE framework aims to generate useful SQL query
recommendations to users of relational databases. An item-
based approach is followed using query fragments to repre-
sent user sessions. Representing information at a coarser level
of detail, results in some loss of accuracy in the predictions as
compared to the tuple based approach. The fragment-based
approach can be implemented efficiently as the space of frag-
ments grows slowly and the summaries are very sparse. Rec-
ommendations can be generated faster as the fragment-to-
fragment similarities can be computed offline and stored for
quick retrieval with less computational overhead. This trade-
off between computational efficiency and accuracy is worth
pursuing, to be able to have a scalable implementation, run-
ning with real “big” data, with an acceptable loss in precision.

There are many interesting directions to explore in the fu-
ture. The measure of impact, the query relaxation process has
in the quality of recommendations can be analyzed. A se-
quence-based approach for recommendations can also be ex-
plored as further work. A more generic and scalable imple-
mentation of the QueRIE system can be explored. Another
dimension would be to implement an access control mecha-
nism in building the recommended queries.

REFERENCES
[1] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, "Collaborative filtering for

interactive database exploration," in Proc. 21st Int.Conf. SSDBM, New Orle-
ans, LA, USA, pp. 3–18, 2009.

[2] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and N. Polyzotis,
"QueRIE: A recommender system supporting interactive database explora-
tion," in Proc. IEEE ICDM, Sydney, NSW, Australia, 2010.

[3] J. Akbarnejad et al., "SQL QueRIE recommendations," PVLDB, vol. 3, no. 2,
pp. 1597–1600, 2010.

[4] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh,
“QueRIE: Collaborative Database Exploration”, IEEE Transactions on
Knowledge And Data Engineering, vol. 26, no. 7, pp.1778-1790, July 2014.

[5] G. Linden, B. Smith, and J. York, "Amazon.com recommendations: Item-to-
item collaborative filtering," IEEE Internet Comput.,vol. 7, no. 1, pp. 76–80,
Jan./Feb. 2003.

[6] "Personalized DBMS: An elephant in disguise or a chameleon?" IEEE Data
Eng. Bull., vol. 34, no. 2, pp. 27–34, Jun.2011.

[7] J. Levandoski, M. Mokbel, and M. E. Khalefa, "FlexPref: A framework for
extensible preference evaluation in database systems," in Proc. IEEE ICDE,
Long Beach, CA, USA, 2010.

[8] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu, "A
case for a collaborative query management system," in Proc. 4th Biennal
CIDR, Asilomar, CA, USA, 2009.

[9] G. Koutrika, B. Bercovitz, and H. Garcia-Molina, "FlexRecs:Expressing and
combining flexible recommendations," in Proc.SIGMOD Conf., New York,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015 1345
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

NY, USA, pp. 745–757, Jun. 2009.
[10] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu, "SnipSuggest: Con-

text-aware autocompletion for SQL," PVLDB,vol. 4, no. 1, pp. 22–33, 2011.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Sql querie recommendations
	3.1 The QueRIE Framework
	3.2 Conceptual Framework
	3.3 Tuple-Based Query Recommendation
	3.4 Fragment-Based Query Recommendation

	4 Conclusion
	References

